Strategies for an efficient implementation of the Gauss-Bessel quadrature for the evaluation of multicenter integral over STFs
نویسندگان
چکیده
In a previous work, a new Gauss quadrature was introduced with a view to evaluate multicenter integrals over Slater-type functions efficiently. The complexity analysis of the new approach, carried out using the three-center nuclear integral as a case study, has shown that for low-order polynomials its efficiency is comparable to the SD. The latter was developed in connection with multi-center integrals evaluated by means of the Fourier transform of B functions. In this work we investigate the numerical properties of the Gauss-Bessel quadrature and devise strategies for an efficient implementation of the numerical algorithms for the evaluation of multi-center integrals in the framework of the Gaussian transform/Gauss-Bessel approach. The success of these strategies are essential to elaborate a fast and reliable algorithm for the evaluation of multi-center integrals over STFs.
منابع مشابه
Numerical evaluation of Bessel function integrals for functions with exponential dependence
A numerical method for the calculation of Bessel function integrals is proposed for trial functions with exponential type behavior and evaluated for functions with and without explicit exponential dependence. This method utilizes the integral representation of the Bessel function to recast the problem as a double integral; one of which is calculated with Gauss-Chebyshev quadrature while the oth...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملAn effective method for approximating the solution of singular integral equations with Cauchy kernel type
In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملNew Integral Inequalities Through the phi-Preinvexity
Abstract. In this note, we give some estimates of the generalized quadrature formula of Gauss-Jacobi type for phi-preinvex functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of computational chemistry
دوره 29 6 شماره
صفحات -
تاریخ انتشار 2008